
THE PROBABILISTIC METHOD IN PRACTICE

AGNIV SARKAR

Abstract. The Probabilistic Method is a technique made popular by prominent mathe-
matician Paul Erdős. In general, it is utilized in combinatorial and related fields to demon-
strate the existence of objects with certain properties. Its strength comes from its ability to
bypass constructive methods, ensuring existence through the pure idea of “nonzero proba-
bility of existing.” The structure of this work is through introducing definitions and then
playing around with the method, as it is simply the best way to learn it.

The Probabilistic Method is a method that can and should be taught to high school
students due to the beautiful ideas present. This is inspired by The Probabilistic Method
by Alon and Spencer [1], but written by and for high school students.

1. Basics of Probability

As the name suggests, the probabilistic method relies on probability. Here, we will use
the prototypical example of rolling dice. Let us consider a standard 6-sided dice (Fig. 1).

Figure 1. 2 six-sided dice

For any possible output of the dice (1, 2, 3, 4, 5, 6), each one must have 1
6
probability of

appearing. This gives us our first insight. We will describe these outputs as “disjoint”, as
after rolling a dice once, you can never get two numbers.

1
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Remark. Summing over the probability of all disjoint events must give us 1, as exactly one
of these disjoint events must happen!

Furthermore, let us consider the unexpected—what is the probability of NOT getting a
1? Here it is clear that it is the probability of either getting a 2, 3, 4, 5, or 6. This is our
second insight.

Remark. The probability of an event happening plus the probability of an event not hap-
pening is equal to one. This is the key idea behind “complementary counting.”

It will become clear in later proofs why we care so much about complementary counting.
We will end with some notation:

Definition. We say E is an event if it can happen in our probability space. Considering the
dice roll, we can say E1 is the event that we roll a one. Similarly, we can write E2k in the
event that we roll an even number. We can technically call E7 the event that a 7 is rolled.

Definition. We also define the union and intersections of events. The union of two events
is the event such that either of them happens, and the intersection of two events is the event
such that both of them happen. Using our dice roll, consider E2k and E3k, where the first
event is a rolling event and the second event is a rolling multiple of 3. We can then consider
the event E = E2k ∪ E3k, which is the event s.t. either E2k OR E3k happens, or we roll
2, 3, 4, 6. Consider E2k ∩ E3k, which corresponds to rolling a 6.

Definition. We let P : E → [0, 1] be the “probability function” on a probability space.
Going back to the dice rolls and using the event examples from before, we have

P [E1] =
1

6

P [E2k] =
1

2
P [E7] = 0.

If, instead, we were considering probabilities on a weighted dice (i.e. some numbers come
out more than others), we would have a different probability function.

We have the following properties. Prove them yourself by drawing a Venn diagram!

Lemma 1. Let E1, E2 be events and P be our probability function. Then the following
holds true, regardless of E1, E2 and P .



THE PROBABILISTIC METHOD IN PRACTICE 3

P [E1 ∪ E2] ≤ P [E1] + P [E2]

P [E1 ∩ E2] ≤ min(P [E1], P [E2])

P [E1 ∪ E2] + P [E1 ∩ E2] = P [E1] + P [E2].

This is the key notation we will need for our work, but the author stresses that these
definitions are fairly loose. There are more technical definitions of a probability space, but
this one will be sufficient for now.

One last trick that the author believes important to know has to do with approximations,
namely Stirling’s.

Theorem 1 (Stirling’s Approximation). Let n ∈ N. Then,

√
2πn

(n
e

)n
e

1
12n+1 < n! <

√
2πn

(n
e

)n
e

1
12n .

This looks nasty, and that is because it is. The proof will not be covered here, but its
power lies in the ability to convert factorials into exponentials. This will be utilized later!

2. Beginning with Coloring

A general crash course in Graph Theory will unlock a lot of different modes of thinking
for how we treat many problems in our day to day. This is not simply a

Definition. A graph G = (V,E) is a collection of vertices V which are related by edges E.
A vertex is a singular element, whereas an edge is a pair of vertices. A directed graph has
the distinction that the edge set contains ordered pairs, similarly, an undirected graph has
unordered pairs of edges. In general, we will talk about undirected graphs.

For example, consider the graph G = (V,E) where

V = {1, 2, 3, 4, 5, 6},
E = {(4, 6), (4, 5), (3, 4), (2, 3), (2, 5), (1, 5), (1, 2)}.

This is drawn in Fig. 2.
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Figure 2. The graph G

Another example is K7, which reads “the complete graph on 7” vertices. This simply
means G has 7 elements in its vertex set and every pair of edges is contained in the edge set.

Figure 3. Complete graph on 7 vertices (all possible edges)

A nice question to ask is “how many graphs are there are n vertices?” The author leaves
this for the reader to mull over.

Now, mathematics is not just technical mayhem—rather, it is art. So, a natural question
to ask is if there are any ways to color the vertices of a graph such that each vertex is
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connected to different colors. Take the graph in Fig. 2, and try and color it (i.e. assign each
vertex a color) with the smallest number of colors.

If you got 3 colors, you would be correct. In fact, there is a well-known upper bound
on the smallest number of colors for a graph that is planar, or graphs that can be drawn
in such a way that no edges (the lines) overlap with one another. For example, the graph
given is planar, but the graph given in Fig. 3 is decidedly not planar, and requires 7 colors.
For planar graphs, the bound is perhaps surprising for those who have never touched graph
theory before:

Theorem 2 (4-Color Theorem). Any planar graph G requires at most 4 colors to be colored
such that each vertex that is connected by an edge has distinct colors.

Look at a map and count the number of colors used! What is surprising about this theorem
is that it was conjectured in 1852, had some false proofs appear in 1879-80, and was finally
proven with a computational method in 1977! This was one of the first major results to
be proven with the help of a computer, and it was not until 2004 that the mathematical
community had 100% certainty that this result was in fact proven true.

I quite like this theorem, and I hope you do too! Looking back at our graphs though,
notice that the choice of 2 elements per edge is... a little arbitrary. This is a part of pure
mathematics, wherein mathematicians generalize everything.

Definition. A hypergraph H = (V,E) is a vertex set V and a hyper-edge set E, where an
edge is a collection of vertices. The notion of undirected/directed is carried over from the
graph definition. A n-uniform hypergraph H is one where each hyper-edge is composed of
n vertices. For example, a 2-uniform hypergraph is a normal graph.

Another question naturally arises. Given n, k, is there a general formula for the number
of k-uniform hypergraphs on n vertices? Mull over this.

Figure 4. A hypergraph (Wikipedia)
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As far as the author is aware, there are no explicit bounds on the number of colors needed
to color a hypergraph such that each edge has distinct colors. Some more information is in
[2].

So it’s up to you now! Try and draw a 4-uniform hypergraph with 4 hyperedges. Try and
color it such that each hyperedge has all of the colors you’ve chosen! This leads to our first
problem.

Problem. Suppose n ≥ 4 and let H be an n-uniform hypergraph with at most 4n−1

3n
edges.

Prove that there is coloring of the vertices of H by four colors so that in every edge, all four
colors are represented.

Note the style of this problem—we are proving existence.

Proof. Let n ≥ 4 and fix H = (V,E) to be a hypergraph that is randomly colored on the
vertices of a n-uniform hypergraph with 4 colors (each with equal probability of appearing),

and having at max 4n−1

3n
edges. To visualize this, one can imagine rolling a 4-sided dice, one

for each vertex, and coloring it based on the number.
Define AR to be the event for all edges R ∈ E is not quad-chromatic, i.e. that it does not

contain all four colors. We can then bound this probability as

P [AR] <
3n

4n−1
.

The reason that this is true is the probability that an edge is without a color c is 3n

4n
. So,

by adding it up for each color, you get an upper bound.
We know that |E| ≤ 4n−1

3n
. Then,

P

[⋃
R∈E

AR

]
< |E| · 3n

4n−1
≤ 4n−1

3n
· 3n

4n−1
= 1.

As the probability of any edge not containing every color is less than 1, there is a nonzero
probability that every edge in E contains every color. As such, there is a coloring on H such
that every color is represented on every edge. □

The key idea here is complementary counting!
This idea of coloring will be touched upon later, but before that, we will touch upon

directed graphs at least once, as they come into practice a lot in the real world.

Definition. We say a directed graph T = (V,E) is a tournament if T is a complete graph
(each unordered pair of vertices is in E). Consider a round-robin tournament between 4
people, and draw a vertex from the winner to a loser (Fig. 5). This is why we call it a
tournament. We call V the people!
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Figure 5. Tournament

Again, try and find the number of tournaments on n vertices. An interesting property is
generally called Sk and is defined below.

Definition. Let T be a tournament. We say T has the Sk property if, for all k players,
there exists another player that beats them. In terms of edges/vertices, this means for all
sets of k vertices there exists another vertex that points to all of these vertices.

Try drawing a few tournaments of size 4 which have the S2 property. Notice that all
tournaments that satisfy Sk cannot have any player that wins all of the games!

It is an interesting problem to bound the size of tournaments such that they have the Sk

property. Consider the following problem.

Problem. Prove that if
(
n
k

)
(1 − 1

2k
)n−k < 1, then there is a tournament on n vertices that

has the property Sk.

We will prove this with the probabilistic method. Note this is also an existence proof!

Proof. Fix integers n and k such that 1 ≤ k ≤ n. Let T be a random tournament on n
vertices such that all edge’s direction is chosen independently. For all sets of vertices, R with
|R| = k let AR be the event such that Sk does not apply, i.e. no vertex beats every vertex
in R. Then,

P [AR] = (1− 2−k)n−k.
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The reason this is true is that there are (n − k) vertexes in T outside R, and each has a
2−k probability of beating every vertex in R. So, as Sk not applying would mean that there
exists an R such that AR applies. So we can use the bound to find

P [T does not have Sk] = P

 ⋃
|R|=k

AR

 ≤
(
n

k

)
(1− 2−k)n−k.

So, if
(
n
k

)
(1 − 2−k)n−k < 1, then there is a nonzero probability that Sk applies to T , and

hence that there is a tournament on n vertices that has the property Sk. □

We again used the idea of complimentary counting! There is more on this problem and
this specific property in [3], which goes further into other interesting properties.

This last problem is meant to be a little harder, so do not feel defeated if it seems a little
more tricky!

Problem. A tournament is called transitive if the directed edges (i, j) and (j, k) imply
the directed edge (i, k). (Equivalently, there is some ordering of the vertices such that the
endpoint of every directed edge (i, j) satisfies i < j.) Show that there exists a tournament
on n vertices, which does not contain any transitive subtournament on 2 + 2 log2(n).

Proof. Let T be a random tournament on n vertices such that the probability of a vertex
beating or losing to another node is 1

2
. For every sub-tournament R of T, let AR be the

probability that R is transitive. Then,

P [AR] = s!2
s(1−s)

2 .

This is because R being transitive is equivalent to R being a strict total ordering, and
there are s! different ways of ordering them and the edges must follow suit.

So, P [T has at least one transitive subtournament] can be written as

P

 ⋃
|R|=s

AR

 ≤
(
n

s

)
s!2

s(1−s)
2

≤
(n
k

)s
· e
√
n
(s
e

)s
· 2−(1+2 log2(n))(1+log2(n))
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If s = 2 + 2 log2(n), then

P

 ⋃
|R|=2+2 log2(n)

AR

 = ens+ 1
22−1−3 log2(n)−2 log2(n) log2(n)

= ens+ 1
2 · 1

2
· n−3 · n−2 log2(n)

=
e

2
· ns− 5

2
−2 log2(n)

≤ e

2
√
n
.

If there is a nonzero possibility for T to contain a transitive subtournament, the prior ex-
pression has to be less than 1. So,

e

2
√
n
< 1

e

2
<

√
n

e2

4
< n

1.8 <
e2

4
< n

1.8 < n

So, there exists a tournament on 2 or more vertices which does not contain any transitive
subtournament on 2 + 2 log2(n) vertices. □

3. Ramsey!

Frank Ramsey was an amazing man, and it is quite amazing that he has a theory named
after him purely from lemmas that he developed for different theories. One of his most
notable contributions is called the Ramsey number.

Definition. We define R(s, t) to be the smallest number n such that any red-blue coloring
of Kn must contain a red Ks or a blue Kt.

Ramsey’s theorem guarantees R(s, t)’s existence, and the intuition is that for extremely
large graphs, there are too many edges to not guarantee a Ks or a Kt.

The author asks the reader to compute R(1, 1), R(2, 2), and begs them not to attempt
R(4, 4), R(5, 5), R(6, 6), . . .. There are just too many graphs, and it is actually unknown for
R(5, 5) and above. The most recent improvement was from the summer of 2023, and their
proof utilizes some probabilistic methods. See [4] for more information!

This is why we find bounds.
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Problem. Prove that if there exists a real number p, with 0 ≤ p ≤ 1, such that(
n

s

)
p(

s
2) +

(
n

t

)
(1− p)(

t
2) < 1,

then R(s, t) > n.

The key idea here is we will color the vertices red with probability p. This will be more
interesting a little later.

Proof. Let G be the random coloring of Kn where for each edge it is independently colored
red with probability p and blue with probability (1− p). For all subgraphs R ∈ G such that

|R| = s let AR be the event where all vertices in R are red. Then, P [AR] = p(
s
2), as there

are
(
s
2

)
edges within R. Similarly, for all subgraphs B ∈ G such that |B| = t let EB be the

event where B is monochromatically blue. So, P [EB] = (1− p)(
t
2). Then,

P

 ⋃
|R|=s

AR

 ∪

 ⋃
|T |=t

EB

 ≤
(
n

s

)
p(

s
2) +

(
n

t

)
(1− p)(

t
2).

So, if
(
n
s

)
p(

s
2) +

(
n
t

)
(1− p)(

t
2) < 1, then there is a nonzero probability that R(s, t) > n. □

Ramsey numbers go extremely deep, and the probabilistic method was popularized through
this.

4. Exploiting Expectation

Leaving graph theory land, let’s depart into number theory! That’s right number theory.
This section assumes a little bit of modular arithmetic experience and begins to go into the
expected value.

Let’s go back into the dice-rolling situation for a second. What is the expected value for
our dice roll?

Since each output 1-6 has a probability 1
6
, the expected value is

6∑
i=1

i

6
= 3.5

On a weighted dice, the expected would be different. But here we actually see the key
properties of expected value.

Definition. We call E our expectation function. We have for random variable X,

E[X] =
∑

x is a value
that X can achieve

P [x]x.
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Lemma 2. Expectation is a linear operator. Namely, for two random variables X, Y with
constants a, b, we have

E[aX + bY ] = aE[X] + bE[Y ].

The author asks the reader to prove this to themselves. Now, we will proceed with a proof.

Definition. An element x is a residue mod n2 if x ∈ Z/n2Z.

I’d like to preface this problem with how zany it is. Most number theory results are.

Problem. Let A be any set of n residues mod n2. Show that there is a set B of n residues
mod n2 such that at least half of the residues mod n2 can be written as a + b with a ∈ A
and b ∈ B.

Play around with this before you read the proof. When the author first saw this, it was...
astonishing.

Proof. Fix n to be some positive integer, and then fix A to be any set of n residues mod n2.
Pick B uniformly from the collection of all sets of n residues mod n2. Then, denote X to be
the random variable |A+B| and Xr to be the random indicator variable for the event that
an element r ∈ Z2 such that r ∈ A+B. Then, we should find the probability of r ∈ A+B.

For r to be in A+ B, there are exactly n residues mod n2 that could be in B for that to
be true, namely {r} − A. So, P [r ∈ A + B] = 1 − P [r ̸∈ A + B]. So, P [r ̸∈ A + B] is the
number of possible B’s without those values over the number of all possible B’s. This would

be
(n

2−n
n )

(n
2

n )
. As such,

P [r ∈ A+B] = 1−
(
n2−n
n

)(
n2

n

) .

We can then simplify this expression to be

P [r ̸∈ A+B] =

(
n2−n
n

)(
n2

n

) =
(n2 − n)!2

(n2 − 2n)!(n2)!
.

Now we must introduce a lemma.

Lemma 3. For every nonzero n and some nonnegative k such that k < n2,

n2 − n

n2
≥ n2 − n− k

n2 − k

In the author’s opinion, this should hopefully seem intuitive, as we’re making the number
overall smaller on the right-hand side. Work backward on paper before you read the proof.
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Proof. Fix some nonzero n and k such that k is nonnegative and k < n2. As k is nonnegative,

k ≥ 0

n3 − n2 − nk + k ≥ n3 − n2 − nk

(n2 − k)(n− 1) ≥ n(n2 − n− k)

n2 − n

n2
≥ n2 − n− k

n2 − k
.

□

So, with Lemma 3 as well as the fact that 1− x ≤ e−x,

(n2 − n)!2

(n2 − 2n)!(n2)!
=

(n2 − n)!

(n2)!

(n2 − n)!

(n2 − 2n)!

=
(n2 − n)(n2 − n− 1) . . . (n2 − 2n+ 1)

(n2)(n2 − 1) . . . (n2 − n+ 1)
· (n

2 − 2n)!

(n2 − n)!
· (n2 − n)!

(n2 − 2n)!

=

(
n2 − n

n2

)(
n2 − n− 1

n2 − 1

)
· · ·
(
n2 − 2n+ 1

n2 − n+ 1

)
︸ ︷︷ ︸

n distinct terms

≤
(
1− 1

n

)n

.

≤
(
e−

1
n

)n
=

1

e
<

1

2

Then,

E[X] =
n2−1∑
r=0

Xr = n2 ·

(
1−

(
n2−n
n

)(
n2

n

) ) ≥ n2

2
.

So, there exists a B such that |A+B| ≥ n2

2
.

□

5. Incredible Independent Sets

Returning to graphs, we need to define a notion of degree.
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Figure 6. The blue vertices are the Independent Set on the graph.

Definition. Let G be a graph and v a vertex in G. The degree of v in G is the number of
edges that contain v, or, the number of nodes v is connected to by an edge in G.

It is currently unclear how this leads to our next definition.

Definition. Let G = (V,E) be a graph, and let G′ be a subgraph of G, i.e. its vertex set
and edge set are subsets of G’s vertex and edge set such that G′ is also a graph. We say that
G′ is an independent set if there are no possible edges in E that connect any two vertices in
G′.

Do complete graphs have independent sets? If so, how large are they? An example of
another graph whose independent set is highlighted is below in Fig. 6.

It is a surprisingly nontrivial question to find bounds on the size of independent sets for
general graphs. We can use the probabilistic method to find a lower bound.

Problem. Let G be a graph on n vertices and let d(v) denote the degree of vertex v. Prove
that G has an independent set containing at least

∑n
i=1

1
d(vi)+1

.

Try and convince yourself of why this might be the case.

Proof. Fix G = (V,E) to be a graph on n ∈ N vertices and let d(v) be the degree of the
vertex v. Construct a random independent set I as follows. Create a random subgraph of
G by first looking at the vertices of G in a random order, and add this to I. Then, add
each next vertex in the ordering to I if no neighbors of that vertex are in I. Let the random
variable X as X = |I|, and for all vertex v let Xv be a random indicator variable when v ∈ I.
Then, X =

∑
v∈V Xv.

Let v be any vector in V . Then, let S be the set of all neighbors of v and v itself, meaning
that |S| = d(v)+1. So, v has a 1

d(v)+1
chance of being the first element of our random ordering
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of V . In this case, |S ∩ I| = 0, so v ∈ I. Thus, P [v ∈ I] = P [v is first in the sequence] +
P [v is not first, but v ∈ I]. Thus, P [v ∈ I] ≥ P [v is first] = 1

d(v)+1
. So,

E[X] =
n∑

i=1

E[Xvi ] =
n∑

i=1

P [vi ∈ I] ≥
n∑

i=1

P [vi is first] =
n∑

i=1

1

d(vi) + 1

There then must be some independent set with size at least
∑n

i=1
1

d(vi)+1
. □

I think the utilization of the linearity of expectation to convert it into the sum of proba-
bilities is quite powerful.

For this next problem, read it and draw it out first.

Problem. Let v1, . . . vn be unit vectors in Rd. Prove that it is possible to assign weights
Ei ∈ {±1} such that the vector

∑
i Eivi has Euclidean norm less than or equal to

√
n.

The author begs the reader to not turn the page and attempt constructive/inductive proof.
The page space is yours.
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Proof. Fix n to be a non-negative integer. Then, fix a set of n unit vectors v1, . . . vn. Let W
be the random set of size n such that each element is either 1 or −1 with equal probability
1
2
. Denote the ith value of W as Ei.
Then, let V be

∑
i Eivi, e.g. the weighted sum of all the vectors. Then,

E
[
|V |2

]
= E

[(∑
Eivi
)(∑

Eivi
)]

=
∑
i

∑
j

E [EiEj] vivj.

Note that E[EiEj] = 0 if i ̸= j. If i = j, then E[E2
i ] = 1. So,∑

i

∑
j

E [EiEj] vivj =
∑
i

vi · vi = n.

This means that there is a set of weights such that |V |2 ≤ n. This would mean that for
this set of weights, |V | ≤

√
n. So, there exists a set of weights such that it satisfies the

problem. □

Isn’t that insane?! The proof is almost immediate.
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6. Alterations

This is now one of the more technical applications of the probabilistic method. Currently,
we have seen random events, random orderings, expectations, etc. Now, however, we consider
random processes to have some more control over the outcome.

Problem. Prove that every k-uniform hypergraph with n vertices andm ≥ n
3
edges contains

an independent set (i.e., a set of vertices containing no edges) of size at least

2n
3
2

3
√
3m

.

This bound is much cleaner than the one we proved before, and as such, requires this idea
of an alteration. Note it is also a generalization to a hypergraph.

Proof. Fix a k-uniform hypergraph G = (V,E) with |V | = n and |E| = m ≥ n
k
. Choose a

random subset V ′ ⊆ V with the following process. Choose a set of vertices S ⊆ V each
independently with probability p. Let |S| = X. If there is an edge in S, then remove one of
the vertices connected to the edge so that S is eventually independent. Denote the number
of vertices that were removed from the original S as the random variable Y . This final set
is now V ′.

So, we can then write E[|V ′|] = E[X]−E[Y ] by linearity of expectation. We can see that
E[X] = np, and we can also figure out E[Y ]. Within the V ′, the probability of an edge e
being chosen is P [e ∈ V ′] = pk, as there are k vertices in an edge. Then, an upper bound on
E[Y ] is mpk, as there are m edges, and we may overcount some vertices being removed. So,

E [|V ′|] = E [X − Y ] ≥ np−mpk.

We then can take the derivative of the function on the left with respect to p in order to find
the maximum value of the function.

d

dp

[
np−mpk

]
= n− kmpk−1 = 0

p =
( n

km

) 1
k−1

.

Then, we can plug this in to get

E[|V ′|] ≥ n
( n

km

) 1
k−1 −m

( n

km

) k
k−1

.

For the problem, if you plug in k = 3, it simplifies rather nicely into the expected solution. □

Here’s the secret trick! From before, we didn’t really utilize p that much beyond a variable.
Here, we actively utilize it through the derivative to maximize our expected value. It’s a
neat trick!
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7. Additional Alterations

Instead of independence, we’ll look at another subgraph property.

Definition. A dominating set for a graph G = (V,E) is a subset V ′ of V such that any
vertex of G is either in V or has an edge with an element in D.

Again, let’s think about a complete graph. What’s the smallest dominating set? The
largest?

The largest in general is the whole set, and it is generally not too interesting. However,
what about the smallest bound?

Problem. Let G = (V,E) be a graph on n vertices with minimum degree δ > 1. Prove that

G has a dominating set containing at most n1+ln(δ+1)
δ+1

vertices by choosing a random subset
S ⊆ V (independently including each vertex with probability p) and considering the size of
the dominating set formed by adding to S any vertices not already covered by S.

Proof. Fix G = (V,E) to be a graph on n vertices each with minimum degree δ > 1. Then,
let S ⊆ V be a random subset created through the following process. Choose a random
subset of V ′ ⊆ V where each point has independent probability p of being chosen. Let
X = |V ′|. Then, if there are any points outside of V ′ that are not connected to any of the
vertices inside the subset, e.g., the points that prevent the subset from being dominating,
add them to V ′. Denote the number of vertices that you add to the subset as the random
variable Y . Then the final subset becomes S.
Then, we can see that E[|S|] = E[X] +E[Y ]. We have E[X] = np, and we can figure out

E[Y ] as well. There is a (1− p) probability for two points to be disconnected (do not share
an edge). Then, E[Y ] ≤ n(1 − p)δ+1, as this is the probability that not choosing a vertex
that is disconnected (does not share an edge) with S.

So, by using the fact that 1− x ≤ e−x,

E[|S|] = E[X] + E[Y ] ≤ np+ n(1− p)δ+1 ≤ np+ ne−p(δ+1)

We can take the derivative of the function on the left with respect to p in order to find the
maximum of the function. Then,

d

dp

[
np+ ne−p(δ+1)

]
= n− ne−p(δ+1)(δ + 1) = 0

p =
ln(1 + δ)

1 + δ

For this p,

E[|S|] ≤ n
ln(1 + δ)

1 + δ
+ ne−(δ+1)

ln(1+δ)
1+δ = n

1 + ln(1 + δ)

1 + δ
.
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This means there exists a dominating subgraph in G containing at most n1+ln(1+δ)
1+δ

vertices.
□

8. Asymmetric Alterations

We return to Ramsey numbers.

Problem. Show that R(s, t) > n−
(
n
s

)
p(

s
2) −

(
n
t

)
(1− p)(

t
2) for all positive integers n, s, and

t, and for all p ∈ [0, 1].

This should look somewhat similar to one of the first few problems we did; flip back to it!

Proof. Fix n, s, t ∈ N, and some p ∈ [0, 1]. Then, fix a random coloring of the edges of
Kn, constructed in the following way. Color an edge red with probability p or blue with
probability (1 − p). Then, for each complete Ks that is all red within this graph, remove
one vertex. Denote the number of vertices to be removed as X. Similarly, for each complete
Kt that is all blue within this graph, remove a vertex. Denote the number of vertices to be
removed as Y . Then, let G be the resultant graph. Denote the random variable S to be the
number of vertices in G. This can be written as

E[S] = n− E[X]− E[Y ]

Note that E[X] ≤
(
n
s

)
p(

s
2), as for each set of vertices of size s in the original Kn coloring, it

has probability p(
s
2) of being monochromatically red. This means removing a vertex, and it

is less than or equal to as we may be counting a removed vertex multiple times. Similarly,

E[Y ] ≤
(
n
t

)
(1− p)(

t
2). So,

E[S] = n− E[X]− E[Y ]

≥ n−
(
n

s

)
p(

s
2) −

(
n

t

)
(1− p)(

t
2).

Note that R(s, t) > S, as G does not contain any red Ks or blue Kt. So, in particular,

R(s, t) > E [|S|] ≥ n−
(
n

s

)
p(

s
2) −

(
n

t

)
(1− p)(

t
2).

□

9. Acute Subsets of Rd

Going away from graphs again (by now it should be clear that the TPM is almost field-less,
i.e. it works in many of them), let’s consider sets in the real numbers.

Definition. We say a set S ⊆ Rd is acute if, for any three elements in S, they form an acute
angle.
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Consider acute subsets in R2! Can you get more than 3?

Problem. State and prove a lower bound on the maximum size of an acute subset of Rd

by using alterations! You should again start by randomly choosing n vertices of the d-
dimensional hypercube uniformly and independently . . . And again, try to find an explicit
bound in terms of d so that you have a full appreciation of what you’ve accomplished.

This proof assumes a little bit of linear algebra, namely an understanding of the dot
product.

Proof. Fix d, n ∈ N, n ≤ d. Then, let P be a randomly chosen set of points in Rd with the
following process. Uniformly randomly choose n points from a d-dimensional hypercube.
Then, for all triples of points that form a right angle, remove one point, and let the random
variable X be the number of points removed. The resulting point set will then only have
acute angles, and this will be P . Denote the random variable S to be the size of P . Then,
E[S] = n−E[X]. For n < 3, this is simply n, but we are interested in much higher dimensions.
So, if we have three ordered independently chosen points, A,B,C ∈ P , what is the

probability that they can form a right angle? This can be done with the dot product. By
comparing the vectors formed with (A − B) and (C − B). Then, (A − B) · (C − B) = 0 if
and only if ∠ABC = 90◦.
So, we can look at this component-wise. Let A = (a1, a2, . . . ad), B = (b1, b2, . . . bd), C =

(c1, c2, . . . cd). Then, the expression from before can be written as

d∑
i=1

(ai − bi)(ci − bi) = 0.

We know that each component of the points must be 0 or 1, so we can figure out the
probability for this to be true. Note that if bi = 0, then the expression (ai − bi)(ci − bi)
must evaluate to a nonnegative, and if bi = 1, then note that the function must return
either 1 or 0. So, this term is always nonnegative, meaning that we must focus on when
(ai−bi)(ci−bi) = 0. This means that at least one of the terms is 0, which has a 3

4
probability

of happening. Because we want it for each component, then, we can finally get

P [∠ABC = 90◦] =

(
3

4

)d

.

So, there are
nP3

2
unique angles (as order matters, but reversing order does not change

the angle). Then,

E[X] ≤
nP3

2
·
(
3

4

)d

=
n!

2(n− 3)!
·
(
3

4

)d

≤ n3

2
·
(
3

4

)d

.
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We can then plug this into the original expression to get

E[S] ≥ n− n3

2
·
(
3

4

)d

.

We can take the derivative of this with respect to n to find the maximum.

d

dn

[
n− n3

2
·
(
3

4

)d
]
= 1− 2−2d−13d+1n2 = 0

n =

√
22d+1

3d+1

So, we can plug this back into the original function to get

E[S] ≥
√

22d+3

3d+3
.

This is then a lower bound on the size of an acute subset in Rd.
□

I don’t know about you, but the fact that we can approach this problem and find bounds
on the size of acute sets is incredibly interesting and powerful. More on this type of work
is contained in [5], which was done by another high school researcher and generalizes the
definition of acute to other angles.

10. The Symmetric Local Lemma

Remember way back when, I said “we don’t need much more technical probability jargon
than this?”

I didn’t lie, but we will need the following lemma.

Lemma 4 ((Symmetric) Lovász Local Lemma). Let E1, . . . , En be events such that P [Ei] ≤
p for i = 1, . . . n and that each event is independent (i.e. the probability of an event is not
influenced by another) of all the other events except for at most d of them. Then, if

ep(d+ 1) ≤ 1,

there is a nonzero probability that none of these events occur.

The proof of this is omitted. We will refer to this as the LLL in later proofs.

Problem. Let G = (V,E) be a graph with maximum degree d and let V1, V2, . . . , Vs be a
collection of s pairwise disjoint subsets of V with |Vi| ≥ 2ed for all i. Prove that there is an
independent set of G containing precisely one vertex from each Vi.



THE PROBABILISTIC METHOD IN PRACTICE 21

Pause for a moment and consider how interconnected each vertex subset is with one
another, and how this connects to the LLL.

Proof. Fix G = (V,E) to be a graph with maximum degree d. Fix s pairwise disjoint subsets
of V to be V1, V2, . . . , Vs, such that |Vi| ≥ ⌈2ed⌉ ≥ 2ed for all 1 ≤ i ≤ s. For each i, let V ′

i to
be an arbitrarily chosen subset of Vi of size ⌈2ed⌉.
Form a random set S of vertices by uniformly and independently selecting one vertex from

each V ′
i . For each edge f , let Af be the event that both endpoints of f are in S. Then,

P [Af ] ≤ 1
⌈2ed⌉2 , so let the p, which we will use for the LLL, be p = 1

⌈2ed⌉2 .

Note that Af is mutually independent of all Af ′ , except those for which f and f ′ both
have an endpoint in some V ′

i . As there are 2⌈2ed⌉ vertices in the set V ′
i ∪ V ′

j , which are the
sets that f has endpoints in. Each of these vertices has maximum degree d, meaning that
there are at most 2d⌈2ed⌉ such f ′. So, we can take a = 2d⌈2ed⌉ − 1. We subtract 1 because
otherwise, we double-count the edge f .

Because ep(a+ 1) = 2ed⌈2ed⌉
⌈2ed⌉2 = 2ed

⌈2ed⌉ ≤ 1, by the LLL, it is possible to choose S such that

it contains one vertex from V1, V2, V3 . . . such that S is an independent set in G. □

Let’s return to a more artistic problem.

Problem. Let H = (V,E) be a hypergraph in which every edge has at least k elements,
and suppose that each edge of H intersects at most d other edges. If e(d + 1) ≤ 2k−1, then
H is two-colorable.

Yep, that’s the LLL’s doing all right!

Proof. Fix H = (V,E) to be a hypergraph such that every edge has at least k elements and
each edge of H intersects at most d other edges.
Let S be a uniformly independently randomly coloring on V with the two colors red and

blue. Then, for every edge f , let the event Af such that the edge f is monochromatic. Then,
P [Af ] ≤ 21−k = p.

Note that Af is mutually independent of all Af ′ , except for those for which |f ∩ f ′| > 0.
The set of events Af ′ such that |f ∩ f ′| > 0 and f ̸= f ′ is of size at most d, as each edge
intersects at most d other edges.
Then e(d+ 1) ≤ 2k−1, so by the LLL, the H is two colorable. □

11. More LLL Practice.

Up until now, we have talked about graph theory, some number theory, some linear algebra,
etc. This next problem truly demonstrates TPM’s applicability.

Problem. Satisfiability is an important problem in Computer Science, asking the following.
Given a logical formula—a collection of booleans combined with AND’s (∧), OR’s (∨), and



22 AGNIV SARKAR

NOT’s (¬)—is there an assignment of TRUE or FALSE to each variable so that the formula
is true.

In one formulation of this problem (called k-SAT), the formula takes the form of an AND
or clauses, where each clause is an OR of exactly k variables or their negation. For example

any number of clauses︷ ︸︸ ︷
x1 ∨ ¬x3 ∨ ¬x23 ∨ . . . ∨ x101︸ ︷︷ ︸

k terms

∧¬x2 ∨ . . . ∨ x13︸ ︷︷ ︸
k terms

∧ . . . .

State a condition on formulae of this form that guarantees that a satisfying variable assign-
ment exists, then use the (symmetric) LLL to prove it!

Proof. You want each clause to be true in order for the AND statements to collapse to a
true output. Fix k ≥ 1. Fix a formula F with n clauses to look something like:

n number of clauses︷ ︸︸ ︷
x1 ∨ ¬x3 ∨ ¬x23 ∨ . . . ∨ x101︸ ︷︷ ︸

k terms

∧¬x2 ∨ . . . ∨ x13︸ ︷︷ ︸
k terms

∧ . . . .

For each term xi in this formula, randomly pick it to be true with probability half, and false
with probability half. Then, for a clause C, denote the event AC as the event that C is false.
Then, P [AC ] = 2−k, as this is the probability that every element in the clause is false. Note
that this is not the case if terms are repeated within the clause.

Then, P [A set of terms exist that evaluate the formula to true] = 1 − P [∀C ∈ F,AC ] ≤
1− n2−k. If this probability is nonzero, then

0 < 1− n2−k ≤ 1

n2−k < 1 ≤ 1 + n2−k

n < 2k ≤ 2k + n.

This means if there are n ≤ 2k clauses in F where there exists a solution set that evaluates
it to true.

In order for the expression from the LLL to evaluate to true, we would need d ≤ 2k

e
− 1,

where d represents how many other clauses different from C contain at least one of the same
terms. This then tells us how many times we can use a term in order to still see the statement
evaluated to true. □

12. Matching Sums

Note we have only ever had to use expectation, probability, and independence until now.
But as any statistics student will know, variance is lurking in the corner.

Definition. The variance of a real random variable X is defined to be

Var(x) = E[(X − E[X])2] = E[X2]− E[X]2.
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The standard deviation of X is written as σX and is the square root of the variance.

Variance is sadly not a linear operator. In general, it measures how wide of a spread X
can achieve. We will also define the covariance.

Definition. The covariance of real random variables X, Y is defined to be

Cov(X, Y ) = E[(X − E[X](Y − E[Y ])] = E[XY ]− E[X]E[Y ].

The covariance of a real random variable with itself is its own variance.

Note that if X, Y are independent, then their covariance is zero, but the opposite is
not true. So, covariance is somewhat of a measure of how related to variables are. Sadly,
variance is not linear, but we have a formula for it in terms of covariance. Use the expectation
definitions of Var + Cov to prove the following lemma:

Lemma 5. Let Xi be random variables for i = 1, . . . n. Then

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) +
∑
i ̸=j

Cov(Xi, Xj).

Finally, we will use a final probability lemma that is sadly not taught in high school courses
like AP Statistics, even though it can be built using machinery from those classes.

Lemma 6 (Chebyshev Inequality). Let X be a random variable. Then, for any t > 0, we
have

P [|X − E[x]| ≤ t] ≤ Var(X)

t2
.

Proof. We have the short proof from the definitions:

Var[X] = E[(X − E[X])2] ≥ t2P [|X − E[X]| ≥ t].

□

We end on a similar problem as the linear algebra one from before.

Problem. Let v1 = (x1, y1), . . . , vn = (xn, yn) be a collection of n vectors in Z2, where each

xu and each yi is an integer with absolute value less than m = 2n/2

6
√
n
.

Use the probabilistic method to show that there exist two distinct sets I, J ⊆ {1, . . . , n}
such that ∑

i∈I

vi =
∑
j∈J

vj.

Proof. Fix n vectors in Z2 v1 = (x1, y1), . . . , vn = (xn, yn) such that each xi and yi are

integers with absolute value less than m = 2n/2

6
√
n
.
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Randomly choose a subset of the vectors to be S by independently randomly choosing
each element with probability 1

2
. Let V be the sum of vectors within S. Let X and Y be the

x and y component of V . Let Xi be the random variable that vi is in S, and if it is, then it
has value xi, otherwise, it has value 0.
By Chebyshev,

P [|X − µX | ≥ k] ≤ σ2
X

k2

P [|X − µX | ≤ k] ≥ 1− σ2
X

k2

σX =
√
Var(X)

Var(X) = Var
(∑

Xi

)
=
∑
i

Var(Xi) +
∑
i ̸=j

Cov(Xi, Xj)

=
∑
i

x2
i

4
≤ nm2

4
=

2n

144

σX ≤ 2n/2

12

We can do the same process for Y and then combine the two to get

P [|X − µX | ≤ k ∪ |Y − µY )| ≤ k] ≥ 1− 2n+1

144k2
.

This is a lower bound. Assume that all the subsets of S sum up to different lattice points.
Then the probability of any specific lattice point being in the set of sums of subsets of the
vectors is either 0 or 1

2n
. Then, an upper bound on the probability that the sum falls within

k of the mean in both the x and y directions is (2k+1)2

2n
, as there are at most (2k+1)2 lattice

points within range k, and it is an upper bound because not all of these points are necessarily
inside the set of the sums of subsets of vectors. If there exists a value of k such that

(2k + 1)2

2n
< 1− 2n+1

144k2
,

then there exists two distinct sets of vectors such that their sums are equivalent, as this
would contradict the assumption that all the sums of subsets of vectors are distinct.

Whenever

k =
2(n+1)/2

6
,
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this is true. This simplifies the expression into(
2(n+1)/2

3
+ 1
)2

2n
< 1− 2n+1

2n+3
=

3

4(
2(n+1)/2

3
+ 1

)2

< 3 · 2n−2

2(n+1)/2 + 3 < 2(n−2)/233/2

6 < 2n/2(33/2 − 23/2)

2 < 33/2 − 23/2

6 < 2n/2+1

This is always true for all n ≥ 3. When n = 1, 2, each vi can only be the 0 vector, which is
the trivial case of this problem. So we can always find two distinct subsets such that their
sum is the same.

□

13. Conclusion.

Alon and Spencer put it best when they said “Paul Erdős was a searcher, a searcher for
mathematical truth.” I personally believe that the probabilistic method is not just a mindset
but a mindset, that sometimes seemingly unfathomable problems simply require a little bit
of chance to make them more approachable.

There are of course some problems with purely probabilistic solutions and those with purely
constructive ones. The author suggests the reader search out for these and then ponder on
the why. TPM is clearly pervasive, and the author personally believes that many more
problems will be solved, bounds tightened, and existences proved through good utilization
of this method.

References

[1] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016.
[2] Carl Georg Heise, Konstantinos Panagiotou, Oleg Pikhurko, and Anusch Taraz. Coloring d d-embeddable

k k-uniform hypergraphs. Discrete & computational geometry, 52:663–679, 2014.
[3] Hans Ulrich Simon. Minimum tournaments with the strong s k-property and implications for teaching.

arXiv preprint arXiv:2205.08357, 2022.
[4] Marcelo Campos, Simon Griffiths, Robert Morris, and Julian Sahasrabudhe. An exponential improvement

for diagonal ramsey. arXiv preprint arXiv:2303.09521, 2023.
[5] Tanya Otsetarova and Zhulin Li. Boundaries on the number of points in acute sets, 2017.

Bay Area, CA
Email address: agnivsarkar@proofschool.org

mailto:agnivsarkar@proofschool.org

	1. Basics of Probability
	2. Beginning with Coloring
	3. Ramsey!
	4. Exploiting Expectation
	5. Incredible Independent Sets
	6. Alterations
	7. Additional Alterations
	8. Asymmetric Alterations
	9. Acute Subsets of Rd
	10. The Symmetric Local Lemma
	11. More LLL Practice.
	12. Matching Sums
	13. Conclusion.
	References

